Part Number Hot Search : 
DZ23C24 IA1215S 8752B CAT102 FT600 25T08AB MC33275 SDM30004
Product Description
Full Text Search
 

To Download VND920 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 (R)
VND920
DOUBLE CHANNEL HIGH SIDE SOLID STATE RELAY
TYPE VND920 RDS(on) 16m IOUT 35 A (*) VCC 36 V
(*) Per channel with all the output pins connected to the PCB.
CMOS COMPATIBLE INPUT PROPORTIONAL LOAD CURRENT SENSE s SHORTED LOAD PROTECTION s UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN s OVERVOLTAGE CLAMP s THERMAL SHUTDOWN s CURRENT LIMITATION s PROTECTION AGAINST LOSS OF GROUND AND LOSS OF VCC
s s s s
SO-28 (DOUBLE ISLAND) ORDER CODES
PACKAGE SO-28 TUBE VND920 T&R VND92013TR
VERY LOW STAND-BY POWER DISSIPATION REVERSE BATTERY PROTECTION (*)
DESCRIPTION The VND920 is a double chip device made by using STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active VCC pin CONNECTION DIAGRAM (TOP VIEW)
voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. Builtin analog current sense output delivers a current proportional to the load current. Device automatically turns off in case of ground pin disconnection.
VCC 1 GND 1 INPUT 1 CURRENT SENSE 1 NC NC VCC 1 VCC 2 GND 2 INPUT 2 CURRENT SENSE 2 NC NC VCC 2
1
28
VCC1 OUTPUT 1 OUTPUT 1 OUTPUT 1 OUTPUT 1 OUTPUT 1 OUTPUT 1 OUTPUT 2 OUTPUT 2 OUTPUT 2 OUTPUT 2 OUTPUT 2 OUTPUT 2 VCC 2
14
15
(*) See application schematic at page 10
October 2002
1/18
1
VND920
BLOCK DIAGRAM
VCC 1
VCC CLAMP
OVERVOLTAGE DETECTION UNDERVOLTAGE DETECTION
GND 1
Power CLAMP
DRIVER INPUT 1 LOGIC CURRENT LIMITER VDS LIMITER IOUT K OVERTEMPERATURE DETECTION CURRENT SENSE 1 OUTPUT 1
VCC 2 VCC CLAMP OVERVOLTAGE DETECTION UNDERVOLTAGE DETECTION GND 2 Power CLAMP
DRIVER INPUT 2 LOGIC CURRENT LIMITER VDS LIMITER IOUT OVERTEMPERATURE DETECTION K CURRENT SENSE 2 OUTPUT 2
2/18
VND920
ABSOLUTE MAXIMUM RATING (Per each channel)
Symbol VCC - VCC - IGND IOUT - IOUT IIN VCSENSE Parameter DC Supply Voltage Reverse DC Supply Voltage DC Reverse Ground Pin Current DC Output Current Reverse DC Output Current DC Input Current Current Sense Maximum Voltage Electrostatic Discharge (Human Body Model: R=1.5K; C=100pF) - INPUT VESD - CURRENT SENSE - OUTPUT - VCC Maximum Switching Energy (L=0.25mH; RL=0; Vbat=13.5V; Tjstart=150C; IL=45A) Power Dissipation Tl25C Junction Operating Temperature Case Operating Temperature Storage Temperature 4000 2000 5000 5000 355 6.25 (**) Internally limited - 40 to 150 - 55 to 150 V V V V mJ W C C C Value 41 - 0.3 - 200 Internally Limited - 21 +/- 10 -3 +15 Unit V V mA A A mA V V
EMAX Ptot Tj Tc TSTG
(**) Per island
CURRENT AND VOLTAGE CONVENTIONS
IS1 VCC1 IIN1 INPUT1 VIN1 IIN2 VIN2 INPUT2 VCC1 VCC2 IOUT1 OUTPUT1 ISENSE1 IOUT2 OUTPUT2 VSENSE1 VOUT1 IS2 VCC2
CURRENT SENSE 1
VOUT2 ISENSE2 VSENSE2
GROUND1
CURRENT SENSE 2 GROUND2 IGND1 IGND2
3/18
VND920
THERMAL DATA (Per island)
Symbol Rthj-lead Rthj-amb Rthj-amb Parameter Thermal Resistance Junction-lead Thermal Resistance Junction-ambient (one chip ON) Thermal Resistance Junction-ambient (two chips ON) Value 20 55 (*) 42 (*) Unit C/W C/W C/W
(*) When mounted on a standard single-sided FR-4 board with 1cm2 of Cu (at least 35m thick) connected to all VCC pins. Horizontal mounting and no artificial air flow.
ELECTRICAL CHARACTERISTICS (8VSymbol VCC VUSD VOV RON Vclamp Parameter Operating Supply Voltage Undervoltage Shut-down Overvoltage Shut-down On State Resistance IOUT=10A IOUT=3A; VCC=6V ICC=20mA (See note 1) Off State; VCC=13V; VIN=VOUT=0V IS Supply Current Off State; VCC=13V; VIN=VOUT=0V; Tj =25C On State; VCC=13V; VIN=5V; IOUT=0A; RSENSE=3.9K IL(off1) IL(off2) IL(off3) IL(off4) Off State Output Current Off State Output Current Off State Output Current Off State Output Current VIN=VOUT=0V VIN=0V; VOUT=3.5V VIN=VOUT=0V; VCC=13V; Tj =125C VIN=VOUT=0V; VCC=13V; Tj =25C 0 -75 10 20 5 50 0 5 3 41 48 10 Test Conditions Min 5.5 3 36 Typ 13 4 Max 36 5.5 16 32 55 55 25 Unit V V V m m m V A A mA A A A A
IOUT=10A; Tj =25C
Clamp Voltage
SWITCHING (VCC=13V)
Symbol td(on) td(off) Parameter Turn-on Delay Time Turn-off Delay Time Test Conditions RL=1.3 (see figure 2) RL=1.3 (see figure 2) RL=1.3 (see figure 2) Min Typ 50 50 See relative diagram See relative diagram Max Unit s s V/s
dVOUT/dt(on) Turn-on Voltage Slope
dVOUT/dt(off) Turn-off Voltage Slope
RL=1.3 (see figure 2)
V/s
LOGIC INPUT
Symbol VIL IIL VIH IIH VI(hyst) VICL Parameter Input Low Level Low Level Input Current Input High Level High Level Input Current Input Hysteresis Voltage Input Clamp Voltage Test Conditions VIN=1.25V VIN=3.25V IIN=1mA IIN=-1mA 0.5 6 6.8 -0.7 Min 1 3.25 10 8 Typ Max 1.25 Unit V A V A V V V
Note 1: Vclamp and V OV are correlated. Typical difference is 5V.
4/18
1
VND920
ELECTRICAL CHARACTERISTICS (continued) CURRENT SENSE (9V VCC 16V) (See Fig.1)
Symbol K1 dK1/K1 K2 dK2/K2 K3 dK3/K3 Parameter IOUT/ISENSE Current Sense Ratio Drift IOUT/ISENSE Current Sense Ratio Drift IOUT/ISENSE Current Sense Ratio Drift Analog Sense Leakage Current Test Conditions IOUT=1A; VSENSE=0.5V; Tj= -40C...150C IOUT=1A; VSENSE=0.5V; Tj= -40C...+150C IOUT=10A; VSENSE=4V; Tj=-40C Tj=25C...150C IOUT=10A; VSENSE=4V; Tj=-40C...+150C IOUT=30A; VSENSE=4V; Tj=-40C Tj=25C...150C IOUT=30A; VSENSE=4V; Tj=-40C...+150C VCC=6...16V; IOUT=0A;VSENSE=0V; Tj=-40C...+150C Min 3300 -10 4200 4400 -8 4200 4400 -6 4900 4900 4900 4900 Typ 4400 Max 6000 +10 6000 5750 +8 5500 5250 +6 % A V V 5.5 V % % Unit
ISENSEO
0 2 4
10
VSENSE VSENSEH
RVSENSEH
tDSENSE
Max Analog Sense Output VCC=5.5V; IOUT=5A; RSENSE=10K Voltage VCC>8V; IOUT=10A; RSENSE=10K Sense Voltage in Overtemperature VCC=13V; RSENSE=3.9K conditions Analog Sense Output Impedance in VCC=13V; Tj>TTSD; All channels open Overtemperature Condition Current sense delay to 90% I SENSE (see note 2) response
400
500
s
PROTECTIONS
Symbol TTSD TR Thyst Ilim Vdemag VON Parameter Shut-down Temperature Reset Temperature Thermal Hysteresis DC Short Circuit Current Turn-off Output Clamp Voltage Output Voltage Drop Limitation VCC=13V 5V75 75
VCC-41 VCC-48 VCC-55 50
Note 2: current sense signal delay after positive input slope Note: Sense pin doesn't have to be left floating.
5/18
2
VND920
Figure 1: IOUT/ISENSE versus IOUT
6500 IOUT/ISENSE 6000
max.Tj=-40C
5500
max.Tj=25...150C
5000
min.Tj=25...150C
4500
typical value
4000
min.Tj=-40C
3500
3000 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
IOUT (A)
Figure 2: Switching Characteristics (Resistive load RL=1.3)
VOUT
80% dV OUT /dt(on) tr ISENSE 90% 10%
90% dV OUT /dt(off) tf t
INPUT
tDSENSE
t td(off)
td(on)
t
6/18
VND920
Switching time Waveforms
VOUT 90% 80%
dVOUT/dt(on) tr tf
dVOUT/dt(off)
10%
t VIN
td(on)
td(off)
t
TRUTH TABLE (Per each channel)
CONDITIONS Normal operation Overtemperature Undervoltage Overvoltage INPUT L H L H L H L H L H H L H L OUTPUT L H L L L L L L L L L H H L CURRENT SENSE 0 Nominal 0 VSENSEH 0 0 0 0 0 (TjTTSD) VSENSEH 0 < Nominal 0
Short circuit to GND
Short circuit to VCC Negative output voltage clamp
7/18
VND920
ELECTRICAL TRANSIENT REQUIREMENTS
ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E I -25 V +25 V -25 V +25 V -4 V +26.5 V II -50 V +50 V -50 V +50 V -5 V +46.5 V TEST LEVELS III -75 V +75 V -100 V +75 V -6 V +66.5 V TEST LEVELS RESULTS II III C C C C C C C C C C E E IV -100 V +100 V -150 V +100 V -7 V +86.5 V Delays and Impedance 2 ms 10 0.2 ms 10 0.1 s 50 0.1 s 50 100 ms, 0.01 400 ms, 2
I C C C C C C
IV C C C C C E
CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.
8/18
VND920
Figure 3: Waveforms
NORMAL OPERATION INPUTn LOAD CURRENTn SENSEn
UNDERVOLTAGE VCCn INPUTn LOAD CURRENTn SENSEn
VUSD VUSDhyst
OVERVOLTAGE
VOV
VCCn INPUTn LOAD CURRENTn SENSEn
VCC > VUSD
VOVhyst
SHORT TO GROUND INPUTn LOAD CURRENTn LOAD VOLTAGEn SENSEn
SHORT TO VCC INPUTn LOAD VOLTAGEn LOAD CURRENTn SENSEn
OVERTEMPERATURE Tj INPUTn LOAD CURRENTn SENSEn
ISENSE= VSENSEH RSENSE TTSD TR
9/18
VND920
APPLICATION SCHEMATIC
+5V Rprot INPUT1 VCC1 VCC2 Dld Rprot Rprot C. SENSE 1 INPUT2 OUTPUT1
C Rprot C. SENSE 2 OUTPUT2
GND1
GND2
RSENSE1,2 VGND
RGND DGND
GND PROTECTION REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND 600mV / (IS(on)max). 2) RGND (-VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1k) should be inserted in parallel to DGND if the device will be driving an inductive load.
This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table.
C I/Os PROTECTION:
If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot ) in line to prevent the C I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of C and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of C I/Os. -VCCpeak/Ilatchup Rprot (VOHC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup 20mA; VOHC 4.5V 5k Rprot 65k. Recommended Rprot value is 10k.
10/18
1
VND920
Off State Output Current
IL(off1) (uA)
9 8 7 6 5 2.5 4 2 3 2 1 0 -50 -25 0 25 50 75 100 125 150 175 1.5 1 0.5 0 -50 -25 0 25 50 75 100 125 150 175
High Level Input Current
Iih (uA)
5 4.5
Vin=3.25V
4 3.5 3
Tc (C)
Tc (C)
Input Clamp Voltage
Vicl (V)
8 7.8
Input High Level
Vih (V)
3.6 3.4 3.2
Iin=1mA
7.6 7.4 7.2 7 6.8 6.6
3 2.8 2.6 2.4
6.4 6.2 6 -50 -25 0 25 50 75 100 125 150 175 2.2 2 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Input Low Level
Vil (V)
2.6 2.4 2.2
Input Hysteresis Voltage
Vhyst (V)
1.5 1.4 1.3 1.2
2 1.8 1.6 1.4
1.1 1 0.9 0.8 0.7
1.2 1 -50 -25 0 25 50 75 100 125 150 175
0.6 0.5 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
11/18
VND920
Overvoltage Shutdown
Vov (V)
50 48 46 44 42 40 38 36 34 32 30 -50 -25 0 25 50 75 100 125 150 175
ILIM Vs Tcase
Ilim (A)
100 90
Vcc=13V
80 70 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Turn-on Voltage Slope
dVout/dt(on) (V/ms)
700 650 600 550 500 450 400 350
Turn-off Voltage Slope
dVout/dt(off) (V/ms)
550 500
Vcc=13V Rl=1.3Ohm
450 400 350 300 250 200 150 100
Vcc=13V Rl=1.3Ohm
300 250 -50 -25 0 25 50 75 100 125 150 175
50 0 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
On State Resistance Vs Tcase
Ron (mOhm)
50 45 40 35 30 25 20 15 10 5 0 -50 -25 0 25 50 75 100 125 150 175
On State Resistance Vs VCC
Ron (mOhm)
50 45
Iout=10A Vcc=8V; 36V
40 35
Tc= 150C
30 25 20
Tc= 25C
15 10
Tc= - 40C
5 0 5 10 15 20 25 30 35 40
Tc (C)
Vcc (V)
12/18
VND920
Maximum turn off current versus load inductance
ILMAX (A) 100
A B
10
C
1 0.01
0.1
1 L(mH)
10
100
A = Single Pulse at TJstart=150C B= Repetitive pulse at TJstart=100C C= Repetitive Pulse at TJstart=125C Conditions: VCC=13.5V Values are generated with RL=0 In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization
t
13/18
VND920
SO-28 DOUBLE ISLAND THERMAL DATA
SO-28 Double island PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: 0.5cm2, 3cm2, 6cm2).
Thermal calculation according to the PCB heatsink area
Chip 1 ON OFF ON ON Chip 2 OFF ON ON ON Tjchip1 RthA x Pdchip1 + Tamb RthC x Pdchip2 + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb (RthA x Pdchip1) + RthC x Pdchip2 + Tamb Tjchip2 Note RthC x Pdchip1 + Tamb RthA x Pdchip2 + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb Pdchip1=Pdchip2 (RthA x Pdchip2) + RthC x Pdchip1 + Tamb Pdchip1Pdchip2
RthA = Thermal resistance Junction to Ambient with one chip ON RthB = Thermal resistance Junction to Ambient with both chips ON and Pdchip1=Pdchip2 RthC = Mutual thermal resistance
Rthj-amb Vs PCB copper area in open box free air condition
RTHj_am b (C/W) 70 60 50 40
RthB RthA
30 20 10 0 1 2 3 4 5 PCB Cu heatsink area (cm ^2)/island 6 7
RthC
14/18
VND920
SO-28 Thermal Impedance Junction Ambient Single Pulse
Zth(C/W)
100
0,5 cm ^2/is land 3 cm ^2/is land
6 cm ^2/is land
10
One channel ON
1
Two channels ON One channel ON on same chip
Tw o channels ON
0.1
0.01 0.0001
0.001
0.01
0.1 1 time(s)
10
100
1000
Thermal fitting model of a two channels HSD in SO-28
Pulse calculation formula
Z TH = R TH + Z THtp ( 1 - )
where
= tp T
0.5 0.02 0.1 2.2 11 15 30 0.0015 7.00E-03 1.50E-02 0.2 1.5 5 6
Thermal Parameter
Tj_1
Pd1 C1 C2 C1 C2 C3 C4 C5 C6
R1
R2
R3
R4
R5
R6
Tj_2
R1 Pd2
R2
T_amb
Area/island (cm2) R1= (C/W) R2= (C/W) R3= (C/W) R4= (C/W) R5= (C/W) R6= (C/W) C1= (W.s/C) C2= (W.s/C) C3= (W.s/C) C4= (W.s/C) C5= (W.s/C) C6= (W.s/C)
13
8
15/18
VND920
SO-28 MECHANICAL DATA
DIM. A a1 b b1 C c1 D E e e3 F L S 7.40 0.40 17.7 10.00 1.27 16.51 7.60 1.27 8 (max.) 0.291 0.016 18.1 10.65 0.10 0.35 0.23 0.50 45 (typ.) 0.697 0.393 0.050 0.650 0.299 0.050 0.713 0.419 mm. MIN. TYP MAX. 2.65 0.30 0.49 0.32 0.004 0.013 0.009 0.020 MIN. inch TYP. MAX. 0.104 0.012 0.019 0.012
16/18
VND920
SO-28 TUBE SHIPMENT (no suffix) Base Q.ty Bulk Q.ty Tube length ( 0.5) A B C ( 0.1)
All dimensions are in mm.
A
C B
28 700 532 3.5 13.8 0.6
TAPE AND REEL SHIPMENT (suffix "13TR") REEL DIMENSIONS
Base Q.ty Bulk Q.ty A (max) B (min) C ( 0.2) F G (+ 2 / -0) N (min) T (max) 1000 1000 330 1.5 13 20.2 16.4 60 22.4
TAPE DIMENSIONS
According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 ( 0.1) P D ( 0.1/-0) D1 (min) F ( 0.05) K (max) P1 ( 0.1) 16 4 12 1.5 1.5 7.5 6.5 2
End
All dimensions are in mm.
Start Top cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 500mm min No components Components No components
17/18
VND920
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics (c) 2002 STMicroelectronics - Printed in ITALY- All Rights Reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com
18/18


▲Up To Search▲   

 
Price & Availability of VND920

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X